Boundary Complexes and Weight Filtrations
نویسنده
چکیده
We study the dual complexes of boundary divisors in log resolutions of compactifications of algebraic varieties and show that the homotopy types of these complexes are independent of all choices. Inspired by recent developments in nonarchimedean geometry, we consider relations between these boundary complexes and weight filtrations on singular cohomology and cohomology with compact supports, and give applications to dual complexes of resolutions of isolated singularities that generalize results of Stepanov and Thuillier.
منابع مشابه
Persistent homology in graph power filtrations
The persistence of homological features in simplicial complex representations of big datasets in R n resulting from Vietoris-Rips or Čech filtrations is commonly used to probe the topological structure of such datasets. In this paper, the notion of homological persistence in simplicial complexes obtained from power filtrations of graphs is introduced. Specifically, the rth complex, r ≥ 1, in su...
متن کاملMorse Theory for Filtrations and Efficient Computation of Persistent Homology
We introduce an efficient preprocessing algorithm to reduce the number of cells in a filtered cell complex while preserving its persistent homology groups. The technique is based on an extension of combinatorial Morse theory from complexes to filtrations.
متن کاملA Geometric Perspective on Sparse Filtrations
Nerve complexes are discrete structures used for computing topological information about a continuous space, but they often suffer from exponential blowup in size. Sparsifying these complexes allows one to retain most topological information while maintaining a significantly smaller complex. We present a geometric perspective on sparse filtrations, viewing them as a nerve of geometric cones, ra...
متن کاملComputational Topology in Neuroscience
Computational topology is a set of algorithmic methods developed to understand topological invariants such as loops and holes in high-dimensional data sets. In particular, a method know as persistent homology has been used to understand such shapes and their persistence in point clouds and networks. It has only been applied to neuronal networks in recent years. While most tools from network sci...
متن کاملReducing complexes in multidimensional persistent homology theory
The Forman’s discrete Morse theory appeared to be useful for providing filtration–preserving reductions of complexes in the study of persistent homology. So far, the algorithms computing discrete Morse matchings have only been used for one–dimensional filtrations. This paper is perhaps the first attempt in the direction of extending such algorithms to multidimensional filtrations. Initial frame...
متن کامل